The University of British Columbia

MATH 104 and 184 Mock Midterm 1

26 September 2011

Time: 50 minutes

FULL NAME: \qquad STUDENT \#:

SIGNATURE:

\qquad

This Examination paper consists of 8 pages (including this one). Make sure you have all 8 .

INSTRUCTIONS:

No memory aids allowed. No calculators allowed. No communication devices allowed.

MARKING:

Q1	$/ 9$
Q2	$/ 9$
Q3	$/ 7$
Q4	$/ 5$
Q5	$/ 8$
Q6	$/ 12$
TOTAL	$/ 50$

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 2 of 8

Q1 [9 marks]

Find the following limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-4}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$
(c) If $\lim _{x \rightarrow 1} f(x)=8$ and $\lim _{x \rightarrow 1} g(x)=3$, then find $\lim _{x \rightarrow 1} \sqrt[3]{f(x) g(x)+3}$.

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 3 of 8

Q2 [9 marks]
Compute the derivatives of the following functions. DO NOT SIMPLIFY.
(a) $f(x)=\frac{x^{2}+12 x+e^{3}}{x+e^{x}}$
(b) $g(t)=e^{3 t}\left(t^{2}+x^{2}\right)$
(c) $f(x)=\left(x^{2}+x+1\right)\left(x^{3}+1\right)^{3}$

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 4 of 8

Q3 [7 marks]
(a) (2 marks) Carefully state the definition of the derivative of a function $f(x)$ at a point $x=a$.
(b) (5 marks) Use the definition of the derivative from part (a) to compute $f^{\prime}(1)$ for $f(x)=\frac{13}{x+7}$. NO CREDIT will be given for any other method.

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 5 of 8

Q4 [5 marks]

Find the values of the parameters a and b such that the function

$$
f(x)= \begin{cases}(2 x+a)^{3}, & \text { if } x \leq 0 \\ 5 b x+8, & \text { if } 0<x \leq 1 \\ x^{2}+12, & \text { if } x>1\end{cases}
$$

is continuous at all the points in its domain. Is f differentiable at all points in its domain with these values of a and b ?

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 6 of 8

Q5 [8 marks]
Find the equation of the tangent line to the curve $y=f(x)=\frac{1}{\sqrt[3]{x^{2}}}$ that is parallel to the line $y-2 x=\pi$.

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 7 of 8

Q6 [12 marks]

When EZ Electronics Company sells surge protectors at $\$ 50$ a piece, they produce and sell 3000 of them per month. For every $\$ 1$ increase in price, the number of surge protectors they sell decreases by 15. Assume that the fixed production costs are $\$ 50,000$ and the variable costs are $\$ 30$ per surge protector.
(a) Find the linear demand function $q=D(p)$, where p is a price of a unit and q is the number of surge protectors made and sold. [Hint: The point $(p, q)=(50,3000)$ must lie on this line.]
(b) Find the cost function $C(q)$ as a function of q, and then express it as a function of p.
(c) Find the revenue function $R(q)$ as a function of q, and then express it as a function of p.

MATH 104 and 184 Mock Midterm 1 - 26 September 2011 - p. 8 of 8
(d) Find the marginal profit, $M P(p)$, with respect to p.
(e) Find the break-even points. Give both the price p and quantity q at each of these points.
(f) If EZ Electronics Company is operating at the higher break-even point, should it increase or decrease the price of its surge protectors to increase its profits? Explain your answer.

